Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions

نویسندگان

  • Felix Pithan
  • Brian Medeiros
  • Thorsten Mauritsen
چکیده

Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understandingArctic climate and its present and future changes. Here, we show how the formation of Arctic air masses leads to the emergence of a cloudy and a clear state of the Arctic winter boundary layer. In the cloudy state, cloud liquid water is present, little to no surface radiative cooling occurs and inversions are elevated and relatively weak, whereas surface radiative cooling leads to strong surface-based temperature inversions in the clear state. Comparing model output to observations, we find that most climate models lack a realistic representation of the cloudy state. An idealized singlecolumn model experiment of the formation of Arctic air reveals that this bias is linked to inadequatemixed-phase cloud microphysics, whereas turbulent and conductive heat fluxes control the strength of inversions within the clear state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloud Radiative Heating Rate Forcing Using Profiles of Retrieved Arctic Cloud Microphysics

Clouds and their radiative impacts are of primary importance to the Arctic climate and, therefore, global climate. Clouds dominate the radiation balance within the cold, dry Arctic atmosphere, and cloudradiation feedbacks are closely linked with the snow/ice-albedo feedback. Despite the importance of clouds in the Arctic, our current understanding of these clouds remains limited. Global climate...

متن کامل

Contributions of Clouds, Surface Albedos, and Mixed-Phase Ice Nucleation Schemes to Arctic Radiation Biases in CAM5

The Arctic radiation balance is strongly affected by clouds and surface albedo. Prior work has identified Arctic cloud liquid water path (LWP) and surface radiative flux biases in the CommunityAtmosphereModel, version 5 (CAM5), and reductions to these biases with improved mixed-phase ice nucleation schemes. Here, CAM5 net top-of-atmosphere (TOA) Arctic radiative flux biases are quantified along...

متن کامل

Suppression of Arctic Air Formation with Climate Warming: Investigation with a Two-Dimensional Cloud-Resolving Model

Arctic climate change inwinter is tightly linked to changes in the strength of surface temperature inversions, which occur frequently in the present climate as Arctic air masses form during polar night. Recent work proposed that, in a warmer climate, increasing low-cloud optical thickness of maritime air advected over highlatitude landmasses during polar night could suppress the formation of Ar...

متن کامل

Atmospheric Inversion Strength over Polar Oceans in Winter Regulated by Sea Ice 1 2

1 2 Low-level temperature inversions are a common feature of the wintertime troposphere in 3 the Arctic and Antarctic. Inversion strength plays an important role in regulating 4 atmospheric processes including air pollution, ozone destruction, cloud formation, and 5 negative longwave feedback mechanisms that shape polar climate response to 6 anthropogenic forcing. The Atmospheric Infrared Sound...

متن کامل

Atmospheric inversion strength over polar oceans in winter regulated by sea ice

Low-level temperature inversions are a common feature of the wintertime troposphere in the Arctic and Antarctic. Inversion strength plays an important role in regulating atmospheric processes including air pollution, ozone destruction, cloud formation, and negative longwave feedback mechanisms that shape polar climate response to anthropogenic forcing. The Atmospheric Infrared Sounder (AIRS) in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013